

AFRL-IF-RS-TR-2002-209
Final Technical Report
August 2002

LEVERAGING CYC FOR THE HIGH
PERFORMANCE KNOWLEDGE BASE (HPKB)
PROGRAM

Cycorp

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F105

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-209 has been reviewed and is approved for publication

APPROVED:
 CRAIG S. ANKEN
 Project Engineer

 FOR THE DIRECTOR:
 JAMES A. COLLINS, Acting Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
AUGUST 2002

3. REPORT TYPE AND DATES COVERED
Final Jun 97 – Oct 01

4. TITLE AND SUBTITLE
LEVERAGING CYC FOR THE HIGH PERFORMANCE KNOWLEDGE BASE
(HPKB) PROGRAM

6. AUTHOR(S)
Douglas B. Lenat and Mary A. Shepherd

5. FUNDING NUMBERS
C - F30602-97-C-0182
PE - 62301E
PR - IIST
TA - 00
WU - 05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cycorp
3721 Executive Center Drive, Suite 100
Austin Texas 78731-1615

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-209

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Craig S. Anken/IFTD/(315) 330-2074/ Craig.Anken@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This work was part of the DARPA High Performance Knowledge Base (HPKB) program. The work described in this final
report has focused on providing to the HPKB program the robustness and effectiveness of common sense knowledge
as embodied in the Cyc knowledge base. Its objective was to provide intermediate level knowledge necessary to tie
together high level, abstract knowledge and low level application specific knowledge to ease integration of knowledge
bases and provide more efficient and more powerful inferencing mechanisms. The pre-existing Cyc KB had tens of
thousands of useful rules for HPKB Integrated Knowledge Base (IKB) to inherit, and the Cyc team had already analyzed
the "perennial conceptual issues" for thirteen years prior to HPKB. Early adoption of Cyc's Public Upper Ontology as the
"HPKB Jumpstart Ontology" gave both the Cycorp and SAIC teams a uniform, convenient, and reliable environment to
add knowledge, ask questions and gather measurements.

15. NUMBER OF PAGES
31

14. SUBJECT TERMS
Knowledge Base Technology, Artificial Intelligence, Information Technology

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

TABLE OF CONTENTS

Introduction..1

Task 1. Libraries of intermediate-level ontologies ..5

Task 2. Efficient reasoning on large KBs ..9

Performance evaluation: Crisis Management Challenge Problems.............................13

Conclusions... 13

Appendix 1: Practical Knowledge Representation and the DARPA High Performance
Knowledge Bases Project ……………………………………………………………16

 ii

LIST OF FIGURES

Figure 1: Bridging the Knowledge Gap...1

Figure 2: HPKB Evaluation Results ..3

Figure 3: Comparison of the KB work ..7

Figure 4: Classification of Collective Goals..8

Figure 5: Relations Between Agents ………………………………………………….9

Figure 6: Low Level System Functionalities .. 12

Figure 7: High Level Inference Functionalities .. 12

Figure 8: Year 2 Improvement.. 14

Figure 9: Knowledge Reuse.. 15

Figure 10: Evaluation Chart.. 15

 1

Introduction

The work described in this final report has focused on providing to the High Performance
Knowledge Base (HPKB) program the robustness and effectiveness of common sense
knowledge as embodied in the Cyc knowledge base.

The Cyc project has spent the past seventeen years developing appropriate data structures
and algorithms to represent and efficiently handle common sense knowledge. The pre-
existing Cyc KB had tens of thousands of useful rules for HPKB Integrated Knowledge
Base (IKB) to inherit, and the Cyc team had already analyzed the “perennial conceptual
issues” for thirteen years prior to HPKB. Early adoption of Cyc’s Public Upper Ontology
as the “HPKB Jumpstart Ontology” gave both the Cycorp and SAIC teams a uniform,
convenient, and reliable environment to add knowledge, ask questions and gather
measurements.

There were two main goals of the Cycorp High Performance Knowledge Base (HPKB)
effort.

1. The first goal was to build libraries of intermediate-level ontologies. Given the
HPKB goals of breadth and flexibility (rapid accommodation to changes), we felt
there was much value in codifying the intermediate levels of knowledge: the
background conceptual structure needed for battlefield- and crisis- modeling and
analysis. For example, concepts such as “pinning a force that’s guarding a critical
resource” lies far below a concept like “Tactic” and far above the level of tactics
specific to particular weapons systems, particular opponents, particular terrains,
etc. See Figure 1 below.

 Figure 1

FIGURE 1:

 2

Result: The HPKB participants (on the Teknowledge “team”) were able to
effectively leverage this intermediate layer of ontology and knowledge, to do
rapid model creation and revision. See Figure 2, below, for how much power this
actually added. In our original proposal, we estimated that we would need to
create about 200 new separate micro-theories, covering many aspects of the
physical environment, devices, human limitations, etc. During the execution on
our HPKB contract, we ended up creating over 800 new micro-theories.
Together, those new micro-theories comprised about 300k axioms interrelating
50k concepts. In addition to working bottom-up, Cycorp was able to work top-
down by extending the large existing Cyc ontology: approximately 60% of those
200k axioms and 20k concepts were already in the Cyc Knowledge Base.

2. Our second goal was to make it possible for machines to perform efficient

reasoning on large Knowledge Bases (KBs). In the past, the techniques for
efficiently building, editing, browsing, and reasoning on a 5,000-rule knowledge
base had not been able to scale up to 100,000+ rule KBs. We extended our
existing Cyc inference engine code, developing new tools and techniques that
enabled practical, resource-limited operation on huge KBs, at least for the classes
of reasoning most commonly needed for HPKB problems. I.e., we developed
new low-level search guidance heuristics and new high-level special-case
reasoning modules that were relevant to the HPKB target applications.

As in Task 1, we took an engineering approach to this task, the development
proceeding incrementally and driven by the target applications, not by aesthetic
concerns or ideology. To enable others to use just as much of the results as was
appropriate, we created three quite different deliverables:

(a) a formally specified API (Application Program Interface) to
maximize independent development, which we posted (and still
have posted) on our website;

(b) a text repository documenting useful ideas, techniques, algorithms,
data structures, etc., written up in prose, PowerPoint slides,
periodic project status reports, and journal articles; and

(c) an executable piece of software embodying those ideas and
adhering to that API. This code, referred to as the integrated
knowledge base (IKB), was distributed free of charge to all the
HPKB participants to use as a sort of interlingua or reference
ontology, inference engine, and interface suite.

 3

The full leveraging of Cyc was only utilized by the Teknowledge team, shown in blue on
the graph that comprises Figure 2, above, prepared by the HPKB Evaluation team led by
IET. The SAIC team, shown in red, used only a small portion of this and level (b),
above. The results speak for themselves; each column represents a batch of 100
parameterized test questions that intelligence analysts posed (to each team’s system)
during the HPKB Evaluation exercise.

Why did Cyc turn out to be so needed for HPKB? When an application is developed, its
very narrowness and specificity enables the developer to make all sorts of simplifying
assumptions about time, space, the participants, etc. This “ontological corner-cutting”
makes that application work sooner and more efficiently. Unfortunately, it makes that
application rather brittle – it is quite difficult to change as the task changes. But more
than this, it makes it virtually impossible to integrate its knowledge with a different
application that is, conceptually, quite relevant. That is because an application
constructed this way is developed under its own set of simplifying assumptions.

Even though two applications may use the same representation language, and the same
“upper ontology” of very general concepts, they would not be able share their knowledge
unless they shared those same simplifying assumptions. There would be just too many
hidden assumptions underlying each of the two rule-sets. E.g., one might ignore time
(such as MYCIN) and one might track entities over extended periods of time, and mixing
their rules would lead to chaos and error. This phenomenon was even stronger when the
size of the KB was increased to HPKB-magnitude levels, and Cyc thereby became not
just a luxury but a necessity.

Innovation was required at each step of the process: to identify, articulate, codify,
formalize, and organize that intermediate-level HPKB knowledge. We leveraged both

Figure 2

 4

the Cyc content that had been accumulated and the ontological engineering methodology
that had evolved in the process of acquiring and organizing that content. We provided
HPKB modelers with painstakingly analyzed and axiomatized terms (including relations)
relevant to battlefield models and crisis analysis, and dozens of assertions involving each
of those terms. The terms were arranged in concept hierarchies, and independently
organized into a structure of many hundreds of “micro-theories”. The new classes and
relations inherited all the relevant constraints and knowledge from Cyc’s upper and
middle levels.

To summarize what was unusual here: There was a focus on the intermediate levels of
knowledge, not the upper ontology nor the domain-specific terms. There was also focus
on the content the axioms about the terms, not just the terms themselves, and we were
able to leverage the existing content and methodology, fully declaratively, so that even
the “escapes” to procedurally attached code were redundant with declarative axioms.

In getting our inference engine to work on a huge KB, we had to carefully examine the
various tools and techniques developed over the past forty years of work in search,
representation and inference; select the most powerful of these; get them to work
together; and pioneer new tools and techniques as the need arose. Since we believed that
there was power to be gained by further mining and assimilating special-case reasoning,
we defined and integrated novel special-case reasoning modules. Often, new modules
were conceived because it was noticed that some construct was frequently used in some
task so a new module was built to intercept such situations in the future. This is a form of
compilation of Task 1’s intermediate-level knowledge.

The innovations we drew on, and which were extended are:

(1) having both an epistemological level (a clean, expressive language in which to
represent the content) and a heuristic level (special purpose modules which
recognize and handle commonly occurring situations);

(2) solving the problem of maintaining consistency in enormous KBs by dividing the
assertions into clumps (“micro-theories” or “contexts”) which share a set of
common assumptions;

(3) using default reasoning based on argumentation, for example, gathering and
weighing the pro- and con- arguments for each proposition;

(4) employing heuristics and assertions from the KB itself to guide even the
innermost search loops in the inference engine;

(5) maintaining a supersaturated indexing structure which (along with deferral to the
heuristic-level modules) enables truth maintenance to always be “on” even when
reasoning over enormous KBs; and finally

(6) adhering to the principle of making syntax mirror semantics, even when it leads
to redundant or counterintuitive representation/inference choices (e.g., some
“ugly” redundancies and cachings often were highly cost-effective in the long
run.)

 5

The skewing of the results in our team’s favor (Figure 2, above) is understandable given
that the Cyc project has spent the past seventeen years developing appropriate data
structures and algorithms to represent and efficiently handle common sense knowledge.
The pre-existing Cyc KB had tens of thousands of useful rules for the HPKB Integrated
Knowledge Base (IKB) to inherit, and the Cyc team had already analyzed the “perennial
conceptual issues” for thirteen years prior to HPKB. Early adoption of Cyc’s Public
Upper Ontology, which was made public prior to the start of HPKB, as the “HPKB
Jumpstart Ontology” gave both the Cycorp and SAIC teams a uniform, convenient, and
reliable environment to add knowledge, ask questions and gather measurements, but this
was most heavily utilized by the Cycorp/Teknowledge team.

Although there was inevitable overlap, the work reported here fell into the two general
tasks outlined above and expanded below.

Task 1. Libraries of intermediate-level ontologies

Over the course of the project roughly 300,000 assertions were added to the Cyc KB.
Many of these assertions captured source material content, including both facts about
particular agents and events (e.g. terrorist groups) and generalizations about the goals and
behavior of geopolitical agents. The 800 micro-theories were developed based on need,
based on their overall relevance to HPKB target applications in general and to the
Challenge Problems in particular. The theories worked on in the first year, for example,
included:

• direct causality vs. contributed-to
• geography, and travel along pathways
• geopolitical entities or various sizes and types
• group actions, i.e. deliberate actions
• industry/economy and common goals of countries, terrorist groups, etc.
• civil infrastructure of various types
• mass media, and information bearing objects
• pathways in 2- and 3-space
• physics involved in travel, weapon use, etc.
• repeated events
• rules of engagement
• sensors
• transport
• utilities
• weather effects

For each of these theories we produced a 1-5 page English document summarizing the
basic concepts that needed to be added to the existing ontology, the basic relationships
and rules that needed to be formalized and added to the existing knowledge base, and a
set of typical questions related to the HPKB Challenge Problems, HPKB target
applications in general, etc., that should have (and in most cases did) depended on that set
of rules and be answerable using them.

 6

After examining the HPKB Challenge Problem statements, and associated questions, we
made suggestions about gaps in coverage, in the level of the questions, and in supplied
background materials. Further, we analyzed a couple of the questions in moderate detail
to clarify the type and amount of formalization required to handle them. The validity of
this work was confirmed with queries during the HPKB evaluation phase.

Driven by the Crisis Management Challenge Problem specification, and to a lesser extent
the Battlespace Management Challenge Problem specification, we codified hundreds of
concepts that were necessary for:

(a) representing the questions,
(b) representing the answers, and
(c) representing intermediate knowledge used in answering those questions.

We also codified thousands of additional axioms involving those new terms (and often,
involving preexisting Cyc terms as well), and added them to the system. This then
formed the basis for two sorts of demonstrations at the HPKB PI meeting December 3-5,
1998, in San Diego: one conducted by Cycorp, involving Crisis Management questions,
and one that was demonstrated by our integration team, involving pathways in
Battlespace Management.

Following the HPKB Ontology Jumpstart meeting we finished integrating the relatively
small (~300) PANGLOSS/SENSUS top-level into our larger top-level ontology (~3000
concepts and 20,000 assertions about them). The net effect of this integration was the
introduction of 32 new terms into Cyc’s Upper Ontology, plus 291 “alignment” axioms
that map terms in one ontology to terms in the other. There are three separate alignment
relationships: equality, more-or-less-the-same, and a more complicated relationship in
which the connection is explicitly referencable and describable.

Towards the end of the first year work began to add to and extend some of the other
theories which had an effect on the kinds of problems we were trying to solve. These
theories were those dealing with:

• weather effects
• risks and rewards
• international codes of conduct
• order of battle
• vehicles and transportation
• weapons
• weapons systems
• weapons delivery
• planning
• ratios
• fractions
• percentages
• part/whole reasoning

 7

Driven by the Challenge Problems we added a total of about 40,000 assertions (of the
eventual 175,000 which was our target for the end of FY00). Of these, about 75% were
problem-specific facts incorporating some source material content; and of those 30,000,
about half were entered automatically by a new knowledge assimilation tool called “the
slurper”. The other half was entered through manual effort. Divided up by Challenge
Problem, about 75% of this work was for the Crisis Management Challenge Problems
and 25% for the Battlespace Challenge Problems. At the end of May 1998, it became
clear that we (Cycorp) would need to write a Planner in order for our team to handle the
Battlespace Workaround Challenge Problems, and we finished in June 1998.

The results of the June 1998 Challenge Problem Evaluations showed that in the
Battlespace Workaround Challenge Problems, we handled about half the 20 or so
Workaround problems; this was far in excess of our June 1, 1998 goal, which was to
handle at least one problem. In the Crisis Management Challenge Problems, Cyc
produced the team’s answers to all questions, and we consistently outperformed (and
outscored) the entire combined SAIC team (SRI, two Stanford groups, ISI, two MIT
groups, Northwestern, CMU, Textwise). More importantly, we answered about 80% of
the newly-posed queries even after the modification to the scenario to introduce the use
of biological weapons into it. This was far in excess of our original goal, which was to
answer 60% of the pre-modification and 40% of the post-modification queries.

It should be reported, however, that this focus on scoring well at answering these
questions had reached the point of diminishing returns. Further emphasis on that task
reduced the overall quality, value and size of the Task 1 product at the end of the
contract. The reason for this is simple: every hour spent entering some detailed
information about, e.g., the bases of operation of Hezbellah, was an hour not spent
entering intermediate knowledge, which was one of our main goals in this project.

 Figure 3

 8

In Year 2, we significantly extended our Year 1 ontology work, (See Figure 3) as well as
our work on knowledge-acquisition/formalization/entry/testing. The choice of theories to
pursue was based in part on relevance to the evolving set of HPKB Year 2 Challenge
Problems—i.e., the Course Of Action problems and ongoing address of the Crisis
Management problems. Driven by the Challenge Problems, we added about 35,000
assertions to the Cyc KB during this period. In particular, we significantly expanded our
representation of agents as interested rational actors, their related goals, motives and
dispositions to act. Previously we had represented beliefs, goals, fears, desires, … of an
agent, as well as other “propositional attitudes”, like knowing and intending with limited
representation for “internal parts”, and limited ability to perform inference with those
predicates.

Also in Year 2 we expanded our representation of agents’ interests, their related goals,
motives and dispositions to act, together with Cyc’s ability to reason about the content of
agents’ goals, alternatives, etc. See Figure 4 for a sample of the types of Collective Goals
we found necessary to codify.

We also expressed “interests” as first-class propositions, and there is now code-support
for efficiently reasoning with them. We expect this work to be of general use in the
future. We also expect to expand and revise it, building on design choices made and
implemented during the past two years and especially in the last 9 months of the project.

 Figure 4

Major knowledge base additions driven by Year 2 HPKB Crisis Management fell into
four categories. The first of these concerned representation of agents’ interests and
relations between agents. Attention was given especially to characterization of interests
by types of concerns, and to development of inference with interests, especially interests
as reasons for acting. See Figure 5.

 9

A second category of additions centered on the significance of agents’ goals, including
reasoning about the influence of goals on agents’ actions, inferring an agent’s goals from
its agent type, and inferring likely actions based on known goals. A third category
consisted of elaboration of modes of reasoning, specifically temporal reasoning,
analogical reasoning and relevance reasoning. The fourth category concerned
counterfactual modal representation, and the rules regarding them.

 Figure 5

Work was done codifying things like the standard goals of a country. For instance, a
national economy goal would be to ward off a recession. Logical goal representations
were also expanded. These included such information as goal-affecting causal outcomes,
the goal of maintaining circumstances the way they were before, wanting some desired
state to become true, etc.

Task 2. Efficient reasoning on large KBs

For this task we began by producing and distributing initial versions of both the KB-
maintenance API and the KB-reasoning API. This included posting them on the Web
site, accessible both from cyc.com and from the Teknowledge-maintained central HPKB
contractor web site. At the request of the HPKB management at DARPA as well as the
other HPKB contractors, we divided these up slightly differently than planned, namely
into a GFP-analogous (Generic Frame Package, an SRI product which in turn was based
on an early (circa 1986) version of Cyc’s representation language) external API
specification and a KIF-analogous representation language and reasoning specification.

We also prepared and distributed executable code for both KB maintenance and
inference, in Unix and Windows NT versions. When these were presented they
represented a snapshot of existing technology rather than a newly developed one which

 10

would appear later in the project. We also designed and began to implement a radical re-
indexing scheme to more heavily cross-index the knowledge base assertions and, at the
same time, to drastically reduce the space requirements (by a factor of slightly more than
2).

In related work, we built the first version of a Conceptual Graph (CG) MELD
translator, a MELD CG translator, a KIF MELD translator, and designed and built
the first version of a GFP2.0 CycAPI translator and a MELD KIF translator
(although that last was of necessity only partial, due to the limited expressive power of
KIF.) We also edited, expanded, and released another version of the top-level Cyc
ontology to serve as the basis for the IKB, and – as a result of the HPKB Ontology
Jumpstart meeting – we integrated the small number (~ 300) of concepts from
PANGLOSS/SENSUS top-level into our larger top-level ontology.

In some cases, the knowledge we added to Cyc should in principle have resulted in
specific questions being answered correctly, and yet the inference engine failed to
perform the necessary steps. This was occasionally due to a problem with
incompleteness or a bug, but it was usually due to time constraints imposed by the user
being exceeded by the system, so there was a “time out”. We identified and added new
heuristics and Heuristic Level (HL) modules, with associated special-purpose data
structures and algorithms for maintaining and using them, to efficiently represent and
reason about those unnecessarily slow cases. This led to acceptably fast responses.

We also committed to becoming an OKBC compliant site beginning with our end-of-
February 1998 release of deliverables. However, since we did not receive one single
OKBC request during the entire first year, we re-thought our effort to keep Cyc OKBC-
compliant. Given the non-use of OKBC by the SAIC team itself, we decided to drop this
effort and use the time on other more fruitful areas.

The early version of the MELD KIF translator was improved upon, thanks to feedback
from other HPKB participants, and it turned out to be adequate to generate KIF versions
of all the Crisis Management Challenge Problem questions represented in MELD. We
also improved translation work in the opposite translation direction.

Overall, the first year’s work was largely driven by the two Challenge Problems. In
particular (1) the need to efficiently answer – and correctly answer – the plethora of
Crisis Management Challenge Problem questions, and (2) the need to efficiently plan –
and correctly and completely plan – for the Workarounds problems. This in turn led to
the creation of new Heuristic Level (HL) modules, the creation of an entirely new
Planning module, and some experimental (and successful) changes to the fundamental
heuristics used by the inference engine.

We produced a Java-based GUI front end, which was used by IET to formulate its
queries, and which was used by both Integration teams, and their members, to pose
sample test questions with which to exercise the developing systems. We also refined
our MELD (CycL) KIF translator. It performed very well, translating about 95% of

 11

the Crisis Management Challenge Problem queries successfully into valid KIF, by the
end of the first year.

We produced a template-query MELD parser, which successfully translated about
90% of the Crisis Management Challenge Problem queries (from IET’s grammar) into
MELD. Some of these are really nontrivial translations, since some common English
words can have many different meanings, and therefore each single template stood for
potentially many different types of questions, not just many specific possible
instantiations.

In Year 2 of this task, we made a number of improvements to the Cyc API and related
tools. See Figures 6 and 7. The improved and better-integrated inference grapher
provided a graphical display of the inference search which was very helpful to those
using the system. We streamlined and made more robust the process of building smaller,
specialized, client-centric KBs, such as the IKB. We added the ability to filter assertions
displayed for a term by microtheory, and began ordering display of assertions in the
browser by assertion time. This last feature was helped by improved precision of
assertion timestamping, also developed under the HPKB rubric.

We identified a large set of internal methods for exposure as an external API. We created
both a robust TCP server mechanism that allows for invocation of Cyc API services from
external applications, and a Java toolkit designed to support Cyc API connectivity for
Java applications. This improved upon our Java-based GUI front end, which was used by
others to formulate its queries, and which was used by both integration teams (and their
members) to pose sample test questions with which to exercise the developing systems.

In this connection, we also supplied a “reverse-parser” to generate legal parse-trees in the
Challenge Problem grammar from query-instances. Additionally, we generated a large
Cyc API document in HTML form, which described the protocol and functionality
available in the Cyc API. These improvements provided enhanced integration with other
HPKB participants.

We also enhanced aspects of our internal implementation to improve KB maintenance. A
re-design of KB indexing reduced the system footprint by 75%. We implemented a new
mechanism for identifying and creating KB subsets, which are self-consistent smaller
knowledge bases generated from a larger knowledge base. This was used to provide
regular HPKB versions of the Cyc knowledge base that were ultimately developed into
the IKB. A Socratic (stepwise) ASK functionality was added to guide the asking and
analysis of queries with very deep answers. Other additions to low-level system
functionalities include English-from-CycL generation without the Lexicon, and new
metadata for assertions. These last are exploited by the machine.

 12

 Figure 6

 Figure 7

In the Course Of Action (COA) work, Cycorp and Teknowledge jointly created a facility
for semi-automated uploading of COAs to the Cyc KB. This allowed for wholly
automated translation of an iconic COA sketch into the KB, with additional
supplementary knowledge added by human users working from the COA description.
The sketch could then be assessed via a battery of critiquing queries.

 13

We expanded the basic inferencing infrastructure in a number of ways, re-abstracting the
Heuristic Level (HL) module declaration methodology and the portion of the inference
harness that applies HL modules. Particularly, we improved support for closed world
assumption reasoning, genlPreds (relational subsumption), transitivity and symmetry
reasoning during inference, mathematical inferencing, and use of salience directives such
as “except when” exception handling. We also increased canonicalizer robustness and
implemented a distinction between natural kinds and sets, not just in the KB, but in the
way Cyc inference treats them. These improvements allow scalability to hundreds and
even thousands of HL modules. We then added hundreds of HL modules to provide
efficient inference capabilities on common classes of subproblems of high utility. These
improvements were driven largely by the Crisis Management (CM) and Course Of
Action (COA) Challenge Problems; in particular, by (1) the need to both correctly and
efficiently answer the plethora of Year 2 Crisis Management Challenge Problem
questions, and (2) the need to analyze and critique a wide range of military COAs along
multiple dimensions.

Performance evaluation: CM CP Challenge Questions and Issues

Performance on the Crisis Management evaluation was graded along a number of
dimensions, including correctness of question formulations, quality of explanations, and,
of course, correctness of answers. On all dimensions but one, Cyc outperformed the
other team (and on the remaining dimension, the scores were identical). For the initial
round of questions in the evaluations, Cyc’s question/answer/explanation results averaged
2.5 on a scale of 4; after a short repair period, Cyc’s answers averaged around 3.6 for a
batch of variant questions. Both average scores were higher than the other team’s.

One of Cyc’s strengths was in eliminating the absurd when faced with Challenge
Questions. For example the question “Can Iran successfully do a naval invasion of
Afghanistan?” Cyc not only answered correctly, but we were able to develop shortcuts
for inferring such impossibilities quickly. When faced with the question “How are
typical interests of an ambassador of the US like those of a UN envoy?”, Cyc created a
hypothetical query and therefore created a new context. It gave this new context
epistemological status of Hypothetical, postulated a US ambassador and a UN envoy,
forward chained, and then asked itself for similarly-aligned interests which they held in
common, which led to some backchaining. It was then able to generate many answers,
almost all of which were derived from their common interests.

Overall, Cyc’s performance was much more sophisticated than we had originally
expected, with higher scores and a higher percentage of questions answered. Several
novel solutions/answers/paths were obtained, which gave us ideas about making results
comprehensible and accessible to future users.

Conclusions

We added slightly more assertions and terms to the KB than we had originally proposed,
with a total addition of approximately 300,000 assertions and 50,000 concepts. The

 14

additions were more specialized than we had expected (some topics were skipped),
probably due to the Challenge Problems driving both years. The process was also more
automated than we expected it to be (slurping, sparse-term and dialog tools).
Importantly, the terms and assertions entered in Year 1 proved of considerable value in
the Year 2 evaluations, showing that these assertions allow for significant re-use. Cyc’s
common-sense knowledge was also used extensively. In fact, approximately 80% of the
axioms used to answer Crisis Management Challenge Problem questions were entered in
the KB before Year 2, and approximately 95% of the terms used in the answers and the
rules, etc., used to derive them were pre-Year 2. This work has been relevant for
Command Post of the Future (CPOF), Rapid Knowledge Formation (RKF) and Evidence
Extraction and Link Discovery (EELD), and we expect it to be of continuing general use
in the future. We expect to expand and revise it, building on design choices made and
implemented over the two years of the project, and especially the final nine months. See
Figs. 8- 10 below.

 Figure 8

The process of improving knowledge base maintenance and processing capabilities for
HPKB was one of many small enhancements rather than one of major breakthroughs, a
circumstance demonstrating the fundamental appropriateness of the Cyc knowledge base
in such a demanding context. The aggregate improvement resulting from these
incremental advances was surprisingly good, a conclusion that holds true for inferencing
functionality, interfaces and system utilities.

 15

 Figure 9

 Figure 10

 16

Appendix 1: Copy of AI Magazine Publication: “Practical Knowledge
Representation and the DARPA High Performance Knowledge Bases Project”

Adam Pease
Teknowledge
1810 Embarcadero
Palo Alto, CA 94303
USA
apease@teknowledge.com

Vinay Chaudhri
SRI International
333 Ravenswood Ave
Menlo Park, CA 94025 USA
chaudhri@ai.sri.com

Fritz Lehmann
Cycorp
3721 Executive Cntr Dr
Austin, TX 78731
USA
fritz@cyc.com

Adam Farquhar *
Schlumberger
8311 North FM 620 Road,
Austin TX 78726
USA
afarquhar@slb.com

Abstract

We address the experiences of the
DARPA High Performance Knowledge
Bases (HPKB) (Cohen et al., 1998)
project in practical knowledge
representation. The purpose of the
HPKB project was to develop new
techniques for rapid development of
knowledge bases. The goal of this paper
is to describe several technical issues
that arose in creation of practical KB
content.

HPKB PROJECT

EXPERIMENTS
The project had two main objectives:
first, to advance the science of Artificial
Intelligence Knowledge Representation
and Knowledge Base content creation,
and second, to apply these technologies
to create applications with utility to the
Department of Defense. The
applications were specified as two
Challenge Problems (CPs). The first
was the Crisis Management CP, an effort
to develop an automated question
answering system that met the needs of
analysts who must be informed about
emerging world crises. The second was
the Battlespace Challenge Problem.

This effort covered two knowledge-
based systems. One reasoned about
battlefield engineering tasks such as
workaround computation; the other
critiqued battle plans. This paper
addresses issues primarily from the
experiences of the Crisis Management
CP.

PROJECT ORGANIZATION
Two teams worked on these challenge
problems. In the Crisis Management
CP, one team used Cyc (Lenat, 1995)
and its MELD (Cycorp, 1997)
representation language. Another used
KIF (Genesereth & Fikes, 1992) and the
SNARK (Stickel et al., 1994) and ATP
theorem provers.
HPKB was a very large project and
many aspects are not even mentioned in

* The author performed this work while a member
of the Knowledge Systems Laboratory, Stanford
University

 17

this paper. The interested reader should
refer to the HPKB web site (HPKB Web,
1999) and publications list (HPKB Pubs,
1999).

TRADEOFFS IN THEORY CREATION

There is a cost in creating reusable
representations. It is more costly to
create representations that will be
reusable across multiple domains than it
is to create a representation that is
suitable for just one application.
We believe there is a need for a more
formal development process that is built
on some of the best practices from the
software engineering community. It is
always easier to create specific and
limited content as opposed to crafting a
general domain theory. The challenge is
to build time into the development
process for planning and systems
analysis, design, implementation,
testing, and rework and generalization.
Much like the spiral development model
advocated by Booch (Booch, 1994) and
others, a good development process
iterates through these stages several
times during a development process.
One possible instantiation of this process
would be as follows:

DEVELOPMENT PROCESS
Planning and systems analysis. It is
essential to determine the need that the
knowledge must fulfill. Will it be used
for inference? To define a semantics for
natural language interpretation? As an
interlingua for cooperating agents or
software modules? Each of these
applications will entail a different
emphasis on the richness of the
formalization.
Also considered should be the
performance requirements of the
implementation. How fast should the
resulting inference be? Will the

knowledge base need to be augmented
with a significant amount of instance
data? Is logical completeness a
necessity? Answering these questions
will help to determine how expressive
the knowledge representation can be,
which will in turn partially determine the
inference engine that needs to be
employed.
We should note that in the HPKB
project, a great deal of the systems
analysis phase was done for the
knowledge base developers by providing
them with a Challenge Problem (Schrag,
1999:2) that specified and detailed the
scope and purpose of the experiments
that were to come. A great deal of
informally specified knowledge was also
provided.
Design. One way to design a knowledge
base is initially to specify it informally.
The engineer creates English examples
illustrating sample reasoning chains.
Glossaries with English definitions are
created. It can also be useful to create a
taxonomy as a skeleton on which the
theory can be developed.
Implementation. As in software
development, if the two previous phases
are done properly, the implementation
phase can proceed quickly. It is
important that all members of the
development team participate in the first
two phases. Also helpful is a formal
review process led by a chief knowledge
architect.
Knowledge architects, software
architects, and building architects all
have similar roles. While they do not
control every detail of a project, they set
the overall design, standards, and
aesthetics. A knowledge architect
provides guidance to his team about how
to meet project requirements, find a
balance in tradeoffs between
development speed and implementation

 18

generality, maintain consistent
approaches across diverse team
members, and set standards for reviews
and documentation. A good architect
manages by objectives and standards,
which result in an implementation that
speaks with one voice while allowing
participants the freedom to innovate.
Testing. While this phase is obvious for
any knowledge base that is to be used in
a computational system, performing
systematic testing is often ignored. If
the knowledge base has been developed
in a modular manner, an equivalent to
unit testing can be performed on each
small theory. Unit testing allows for
testing of greater coverage than final
integration testing.
Rework and Generalization. This
phase is the most often ignored simply
because of the dynamics of most
research projects. Once the practical
objectives of the sponsors have been
achieved, little time or money remains in
the project to correct shortcuts that may
have been made. However, this phase is
possibly the most important if
incremental scientific results are to be
achieved.
Any large scale project will necessarily
go through the above phases several
times. A good knowledge engineering
process has many similarities to a good
software engineering process.

THEORY REUSE

Both teams reused the HPKB upper level
(HPKB-UL) ontology, derived from
Cyc, during the project. The
representation for the temporal
knowledge available in the HPKB upper
ontology was very well designed. From
the HPKB-UL, we also used
representation for communicative
actions, slots on actions (agent roles),
and the primitives for representing paths.

For one team, reusing these theories
required translating the representation,
extracting portions of the input ontology
for use, and doing limited reformulation.
There was also the need to further
extend the library of the representation
primitives for causality, scales, actions,
processes, and qualitative influences.
The Cyc-based team had access to the
entire Cyc knowledge base. In addition
to areas mentioned for the upper level,
there are good theories for concrete
physical domains of all sorts. Theories
of belief, goals, trust, and the expression
of causality in nondeterministic human
events are essential and less well
developed.
HPKB had a good record of reusing
terms and basic statements about terms.
Developers gained a great deal of value
from inheriting a large set of precise
distinctions about things in the world,
such as the differences among a goal, a
plan, and a desire. However,
comparatively little reuse of general
rules was evident. This can be explained
in several ways:
It's hard to write truly general rules.
Insufficient effort has been placed into
writing general rules because of the
pressures of day-to-day results.
Practicalities of inference are such that a
long chain of reasoning involving
general rules doesn't work in a
reasonable amount of time. One has to
"short-circuit" the deep reasoning with
special-purpose rules that make the
inference tractable.
As an example of reuse, consider the
following inference task performed by
our system:
What risks can Iran expect in sponsoring
a terrorist attack in Saudi Arabia?
To answer questions of this type, one
team developed a simple cause-effect
model. All the predicates below,

 19

including cause-event-event, beneficiary,
and maleficiary were reused from the
HPKB-UL. Even though we capture
only direct effects of an action, this
simple model was effective in practice.
This example illustrates the reuse of
notions of causality that were already
conceptualized in the HPKB-UL. The
following is an example application of
these representation primitives.

(forall ((?terrorist-attack
 terrorist-attack)
 (?agent agent))
(=>
 (performed-by ?terrorist-attack
?agent)
 (exists
 ((?punishment punishment))
 (and
 (causes-event-event
 ?terrorist-attack
 ?punishment)
 (maleficiary ?punishment
?agent)
 (object-acted-on
 ?punishment ?agent)))))

(forall ((?action action)
 (?action1 action1))
 (implies
 (and
 (causes-event-event ?action
?action1)
 (performed-by ?action ?agent)
 (beneficiary ?action1 ?agent))
 (benefit-of-action
 ?action ?action1 ?agent)))

A detailed description of technical
problems encountered in reuse is
available in (Cohen et al., 1999)
(Chaudhri et al., 2000). Even though we
reused representations for actions and
casuality from HPKB-UL, significant
additional representation work needed to
be done. This suggests that a
representation library for actions,
causality, and qualitative influences
needs to be extended. The theoretical
KR community is invited to study the
HPKB-UL and propose representational
modules to be included in it.

PRACTICAL REPRESENTATIONAL
ISSUES

There was a lack of principles for
designing taxonomies. As a result,
creating and maintaining a taxonomy of
primitive concepts became increasingly
difficult as its size grew. Conventional
description logic techniques do not help
in creating taxonomies that contain a
large number of primitive concepts.
Better principles for taxonomy design
are needed.
There was also the need to "hand-
compile" deep reasoning out into
special-purpose theories that had
tractable inference chains.

TAXONOMY
Like many other KBs, the class-subclass
taxonomy was an overarching
organizing principle in our HPKB KB.
A class-subclass taxonomy serves as an
indexing aid to find knowledge and add
new knowledge, and to serve as a
method to efficiently write axioms by
using inheritance.
While designing the taxonomies for the
HPKB project, we encountered the
following problems:
1. As the taxonomy got bigger, it
became increasingly difficult to add new
concepts to it. As a result, there were
concepts that had incorrect positions in
the taxonomy:
Some concepts had missing links. A
class has a missing super-class link if it
is a subclass of another class B, but the
subclass relationship is not declared.
Some concepts had wrong links. A class
has a wrong link in a taxonomy if it is a
direct subclass of B, but the subclass
relationship does not hold true.
2. We were encountering concepts that
were being created by a cross-product of
two sets of concepts, for example:

 20

{International, transnational,
subnational, national} x
{organization, agent}
{Support, oppose} x {attack,
terrorist-attack, chemical-attack}
{Humanitarian, political, military,
diplomatic} x {Organization, Action}

Some concepts had a very large number
of subclasses. In some cases, this was
due to orthogonal ways to categorize a
concept. As a result, such
categorizations were not mutually
disjoint. Large fan-outs made it
cumbersome to navigate through the
taxonomy. As an example, consider the
following snippet from the taxonomy
representing organizations.

Figure 1. A portion of a taxonomy

representing organizations showing
orthogonal categorizations

While the categorization of commercial
organization and unincorporated
organization is based on the legal status
of an organization, the categorization of
international organization and
subnational organization is based on
extent of operations. Mixing such
orthogonal categorizations adds to the
complexity of the taxonomy.
4. If two classes are disjoint, the
disjointness relationship must be
declared.
5. There should be no redundant classes
representing identical concepts.
A taxonomy is well designed if it is free
from all the problems mentioned above.
Ensuring these properties in a small
taxonomy is easy even if it is done
manually. However, as the taxonomy
size grows, making taxonomy well
structured manually is very time
consuming. These problems are

indicative of a poor design methodology
for developing taxonomies. We argue
below that these problems go away if
one takes a more principled approach to
developing these taxonomies and
supports additional constructs to
structure the taxonomies.
If every concept has necessary and
sufficient definitions, one can use a
classifier to help alleviate Problem 1. In
practice, we found that too many
concepts were primitive and did not have
necessary and sufficient definitions.
Therefore, we cannot use a classifier.
Problem 1 stems from the fact that the
taxonomy itself is getting too complex.
For example, a concept is linked or
needs to be linked to too many different
places. As a result, defining a new
primitive concept involves manually
encoding its relationship to numerous
other primitive concepts -- a process that
is error prone. One would hope that the
process of organizing such concepts into
a taxonomy would be considerably
simpler than doing the same thing for the
original concepts.
We need principles for taxonomy design
that can enable us to economically create
and maintain large taxonomies of
primitive concepts.

COMPOSABLE REPRESENTATIONS
We believe that representations are more
reusable if they are compositionally
constructed. A representation is
compositional if it represents each
individual concept in the domain of
discourse, and the representation of
complex concepts is obtained by
composing representations of individual
concepts. To illustrate this, consider the
representation of the following:

The USA conducts a peacekeeping
mission.

 21

In this example, we can use several
different representations. One degenerate
representation might be

UsConductOfPeacekeeping
This representation compiles all the semantic
features of the English statement into a symbol.
A more reasonable representation might be

(and
 (instance-of ?Y
PeacekeepingOperation)
 (performedBy ?X ?Y)
 (members ?X USMilitaryOrganization))

in which the action has been expanded to
describe an action type and detail about the
performer of the action. We can further
decompose the action by describing it as an
event that has the purpose of maintaining a
particular state.

(and
 (toMaintain ?Y PeaceAccord)
 (instance-of ?Y MilitaryOperation)
 (performedBy ?X ?Y)
 (members ?X USMilitaryOrganization))

 (Schrag, 1999:1) has proposed the
following compositionality hypothesis:
noncompositional representations are
inexpensive to build but they are brittle
with respect to weak problem
generalizations and must be re-
engineered (for example, into
compositional representations) or
replaced.
According to the compositionality
hypothesis, the first representation is
inferior to the later versions. However,
although many knowledge engineers
would have a strong intuition that the
later representations are superior, there is
no strong empirical basis for the
proposed criticism of the first
representation. One approach that would
admit the first representation as
acceptable would be to add additional
terms to the KB and give a more
complete definition to it. Thus, even if
the first representation is
noncompositional, it is amenable to
generalization if an application requires
it.
The relative comparison between the
two representations is unlikely to have a

context-independent answer. If in the
current application we never need to
represent or reason with conduct,
mission, or peacekeeping, other than
talking about "conduct peacekeeping
mission", the less expressive
representation is adequate. One can
certainly argue that the first
representation is less reusable.
However, that depends on the next
application. If we use the first
representation, and the next application
requires us to represent or reason with
conduct, mission, or peacekeeping, it is
possible to add them to the KB and use
them to define UsConductOfPeacekeeping.
This may be studied more formally with
an analytical model as follows.
Suppose we design two representations,
one of which uses n1 terms and the other
uses n2 terms. Suppose cost/term is c
and is constant in both cases. The cost
for building a KB for the two cases is
c*n1and c*n2, respectively.
If speeding up KB construction time for
just one application is the objective, a
compositional representation can be bad!
However, if we also care about reuse,
that may not be necessarily so. Does
compositionality enable reuse? We
cannot find out until we run replicated
trials.
Suppose we reuse the KB for a new
application. This new application
requires the same knowledge fragment
that we have already coded but requires
a different compositionality, and we end
up defining n3 new terms for the first
representation and n4 new terms for the
second representation. It is possible that
either of n3 or n4 is zero. The cost for
the new application is c*n3 and c*n4,
respectively.
The objective should be to minimize
c*(n1+n3) or c*(n2+n4). The model
can be generalized to N applications.

 22

The parameter c can be viewed as time
to construct a KB, and thus linked
directly to the program goal of speeding
up the KB construction time. Further,
this model allows us to do the following:
Measure whether it is really worth
decomposing a representation
Amortize the higher cost of
decomposition over a number of
applications
Make explicit the relationship between
reuse and compositionality
Exploring this tradeoff is open for future
work.

"COMPILED" REPRESENTATIONS
One of the HPKB Challenge Problems
dealt with reasoning about economic
actions. One might encode the following
chain:

There exist economic actions
which open markets -
 opening markets encourages
 exports -
 increasing exports improves
 a country's trade balance -
 positive trade balance
 improves economic health -
 all countries are
 interested in
 economic health

However, it may be that in practice,
because of the complexity and
compositionality of each of the encoded
statements, and the depth of the
inference, such a reasoning chain does
not terminate in a reasonable amount of
time. While an inference of depth five
may not seem very taxing, consider the
fact that this set of rules exists in a very
large KB along with tens of thousands of
others. The task of matching these
particular rules and determining that
huge numbers of others are irrelevant is
time consuming.
The result is that to create a reasoning
system that reaches a conclusion in a
short amount of time, one might have to
encode

There is a set of actions
which open markets -

 opening markets contributes
 to economic health -
 all countries are interested
 in economic health

along with defining a set of actions as
subclasses of "opening markets" actions.
The goals of a project can strongly bias a
knowledge engineer to the second
representation. If a research team is
scored, or a development team is paid on
the basis of "correct" answers,
compositionality and deep reasoning will
be sacrificed.

METRICS
For any practical KB content creation
work, there is a need to state crisply the
competence level of a KB, and to make
claims about increasing competence as
the time goes along. Even though we
know that there is an intuitive
relationship between the size of a KB
and its competence, there is no foolproof
way functionally to relate the size to
competence. As an approximate
measure, we used the axiom count in a
KB as one measure of competence.
An early challenge during the project
was to define what counts as an axiom.
Given that there is no universal way to
count axioms, and that the axiom counts
are sensitive to the modeling style and
the language, we developed the
following scheme for categorization of
axioms in a KB.
Constants are any names in the KB,
whether an individual, class, relation,
function, or a KB module
Structural statements are ground
statements using any of (Cyc
term/Ontolingua term) #$isa/instance-of,
#$genls/subclass-of,
#$genlPreds/subrelation-of,
#$disjointWith/disjoint,
#$partitionedInto/disjoint-
decomposition, #$thePartition/partition,
#$genlMt, #$argXIsa/nth-domain (where
X is a digit), #$argXgenls/nth-domain-

 23

subclass-of (where X is a digit),
#$arity/function-arity/relation-arity,
#$resultIsa/range, #$resultGenls/range-
subclass-of
Ground facts are any statement without
a variable.
Implications include any non-ground
statement that has an #$implies (note that
a ground statement that contains an
#$implies is counted as a ground
statement)
Non-ground, non-implications are
statements that contain variables but not
an implication.
This categorization is imperfect, but it is
easy to implement and was applicable to
both of the crisis management systems
developed during the HPKB project.
The structural statements have an
intuitive status in most systems: for
SNARK the structural information is
sort information, for Cyc the structural
information is called definitional, and for
description logic systems the structural
relations are usually called concept
constructors. The statements with
implications are rules. Ground facts
often represent knowledge that can be
found in an almanac or database.
A weakness of this categorization is that
it counts many statements as ground
statements even though they are not
actually ground. For example, the
statements involving template-slot-value,
and #$relationAllExists are counted as
ground. Further refinement to this
categorization is left open for future
work.
The axiom categorization scheme gave
us an empirical tool to compare content
across the two systems developed in the
project. We would welcome proposals
from the theoretical KR community,
detailing more systematic ways to
measure the competence of a large KB.

STANDARDS

Having a standard syntax is a necessity,
but standard syntax plays a relatively
small role in addressing the practical
challenges facing the knowledge
engineer. There is a need to move from
an emphasis on standards of syntax, or
on defining a precise semantics for tiny
theories, to standard large theories and
style guides for axiom writing.
For example, the subclass relationship
can be either stated as
1. (subclass-of A B), or as
2. (=> (A ?x) (B ?x))

Both of these forms are ANSI KIF. The
first form uses subclass-of as a relation
to compactly encode information that
could also be written as in Form 2. The
first form also has the advantage that a
reasoner supporting taxonomic inference
can take advantage of this form, which
can be quite difficult for the second
form.
As another example, consider three
commonly used ways to specify the type
information of variables in an axiom: (1)
using ANSI KIF-style typed quantifiers,
(2) using instance-of relations, or (3)
using the class as a relation. Here is an
example axiom encoded in these three
forms:

(forall ((?x action)
 (?y action)
 (?z country))
 (=>
 (and
 (may-cause ?x ?y)
 (performed-by ?x ?z)
 (maleficiary ?y ?z))
 (risk-of-action
 ?x ?z ?y)))

(forall (?x ?y ?z)
 (=>
 (and
 (instance-of ?x action)
 (instance-of ?y action)
 (instance-of ?z country)
 (may-cause ?x ?y)
 (performed-by ?x ?z)
 (maleficiary ?y ?z))
 (risk-of-action ?x ?z ?y)))

 24

(forall (?x ?y ?z)
 (=>
 (and
 (action ?x)
 (action ?y)
 (country ?z)
 (may-cause ?x ?y)
 (performed-by ?x ?z)
 (maleficiary ?y ?z))
 (risk-of-action ?x ?z ?y))

One additional factor might be that may-cause
and risk-of-action could be defined as referring
to types of actions rather than instances in
different knowledge bases.

These three forms are equivalent and
follow the ANSI KIF standard. In spite
of the standard, people come up with
sufficiently different ways to write
axioms to make the knowledge exchange
difficult. Therefore, the standards must
be accompanied by a style guide before
they can enable knowledge exchange. In
the above example, the style guide could
require that the type information for
axioms should always be stated in the
quantifier specification.

USING A VERY EXPRESSIVE
REPRESENTATION

Expressive representations enable a
degree of generality and reuse not
possible with more restricted
representations. Because of interactions
among axioms, the inference time can
become very high. The most general and
reusable theory is not useful if inference
on those theories is not tractable for your
inference engine. Some ways of
addressing this problem are by
partitioning the KB into modules to
isolate the interactions among axioms,
and by compiling knowledge by hand
into more efficient representations.
One team had the goal of keeping the
inference time for answering a question
to less than 2 minutes. If all the axioms
were loaded at the same search space, it
was not possible to meet this

requirement. Therefore, we modularized
the KB to limit the interactions among
axioms and achieve the desired response
time. This problem would have been
less critical had we limited the
representation to horn clauses.
KB modularization means dividing the
content of a KB into conceptual
partitions that serve the basis for KB
development and inference. We
experimented with two ways to
modularize a KB: subject based and task
based. A subject-based modularization
organizes a KB by subject area and can
enable easier sharing and development
of KB content. A subject area can be
assigned to a knowledge engineer to
direct its development. While reusing a
KB, one can select a KB in the subject
area of interest. A task-based
modularization organizes a KB by the
rules and individuals that are relevant to
a task, thus significantly reducing the
search space. The class, function, and
relation definitions do not affect the
search space, and therefore need not be
modularized to speed up inference.
Modularization of a KB based on the
subject-based criteria and the task-based
criteria can be different and can coexist.
We used both subject-based and task-
based modularization during the project.
For example, three major subject areas
covered in our KB are actions, agents,
and interests. We also created task-
specific partitions in the KB based on
specific parameterized questions (PQs).
For example, for answering questions
about interaction between interests and
actions, there was no need for
knowledge about specific terrorist
groups in the KB that were kept in a
separate partition. The approach to
modularization described here was
clearly engineering driven, and better
principles to arrive at the modularization

 25

are needed. Techniques to develop
modules for a KB in a way that isolates
independent reasoning chains are clearly
of special importance.

ISSUES IMPEDING PROGRESS

Inference engine performance is one
crucial technical issue. While it is not
easy to develop inference modules for
very expressive features, it is incredibly
hard to get those modules to perform
well.
Despite the program's name, execution
speed was not an issue under
investigation in HPKB. Many
researchers have studied algorithms,
speed, and complexity. HPKB was
extremely important because it focused
on content. Much research on inference
performance has not been undertaken in
the context of practical reasoning on
large knowledge bases. The challenge
now is to focus on merging research on
creating and reasoning with large
knowledge bases with research on
inference performance.
The most important non-technical issue
is research parochialism. The need to
"own" a language, ontology, theory, or
protocol is very powerful, whether in
terms of building a research identity or a
commercial base. However, this
fragmentation is hampering progress.
Allen’s seminal work (Allen, 1984)
(Allen, 1994) on representing temporal
knowledge is a good example of the kind
of results that we need, and it is also well
referenced and adopted in the applied AI
community. Allen’s work identified the
primitives necessary to represent a
sufficiently large class of temporal
information and proposed inference
procedures. If we could do the same for
other domains such as actions, space,
and causality, etc, it would greatly speed
the practical KB construction. It is also

the case that careful theoretical work has
been done in these areas but may not be
well known or adopted in the applied AI
community. This work includes (Cohn
et al., 1997), (Giunchiglia & Lifschitz,
1998), (Giunchiglia & Lifschitz, 1999),
(Lifschitz, 1987), (McCain & Turner,
1997).
The KR community is still theoretically
focused. Few people are interested in
working on creating KB content. The
time is right for a new focus on practical
KB content creation.
Acknowledgments
We wish to acknowledge our DARPA sponsor,
Murray Burke, for funding and guiding this
work. We also wish to acknowledge the
essential contribution of Robert Schrag at IET,
who specified the Challenge Problem that made
this research possible. Cleo Condoravdi
provided a very helpful review of the paper.
References
Allen, J. (1984). "Towards a General Theory of

Action and Time", Artificial Intelligence 23,
pp 123-154.

Allen, James and George Ferguson (1994).
"Actions and Events in Interval Temporal
Logic", Journal of Logic and Computation 4,
531-579.

Booch, G. (1994). Object-Oriented Analysis and
Design With Applications, Addison-Wesley

Chaudhri, V., J. Lowrance, J. Thomere, M.
Stickel, and R. Waldinger (2000). Ontology
Construction Toolkit. Artificial Intelligence
Center, Technical Report.

Cohen, P, V. Chaudhri, A. Pease, and R. Schrag
(1999). "Does Prior Knowledge Facilitate the
Development of Knowledge Based Systems",
Proceedings of AAAI-99.

Cohen, P., R. Schrag, Jones, A. Pease, Lin, Starr,
Gunning, and Burke (1998). "The DARPA
High Performance Knowledge Bases
Project", AI Magazine, Vol. 19 No.4, Winter.

Cohn, A., B. Bennet, J. Gooday, and N. Gotts
(1997). Representation and Reasoning with
Qualitative Spatial Relations about Regions.
http://www.scs.leeds.ac.uk/spacenet/leedsqsr.
html

 26

Cycorp (1998). "Features of the CycL
Language", on-line report at
http://www.cyc.com/cycl.html .

Genesereth, M., and R. Fikes (Editors) (1992).
Knowledge Interchange Format, Version 3.0
Reference Manual, Computer Science
Department, Stanford University, Technical
Report Logic-92-1, June.

Giunchiglia, E., and V. Lifschitz (1998). An
action language based on causal explanation:
preliminary report. In Proceedings AAAI-98,
pp. 623-630.

Giunchiglia, E., and V. Lifschitz (1999). "Action
Languages, Temporal Action Logics and the
Situation Calculus". In Working Notes of the
IJCAI-99 Workshop on Nonmonotonic
Reasoning, Action, and Change.

HPKB Web (1999). "HPKB Web Site",
http://projects.teknowledge.com/HPKB/

HPKB Pubs (1999). "HPKB Publications Page",
http://projects.teknowledge.com/HPKB/
Publications.html

Lenat, D., 1995, "Cyc: A Large-Scale Investment
in Knowledge Infrastructure".
Communications of the ACM 38, no. 11,
November.

Lifschitz, V. (1987). "Formal Theories of
Action". The Frame Problem in Artificial
Intelligence: Proceedings of the 1987
Workshop. Los Altos, CA: Morgan
Kaufmann Publishers.

McCain and Turner (1997), "Causal Theories of
Action and Change", Proceedings of AAAI-
97, pp 460-465.

Schrag, R. (1999:1), email communication.

Schrag, R. (1999:2). "HPKB Year 2 Crisis
Management, End-to-end Challenge Problem
Specification", Version 1.2, February 5,
Information Extraction and Transport, Inc.
and Pacific-Sierra Research Corp. Rosslyn,
VA.
http://www.iet.com/Projects/HPKB/Y2/Y2-
CM-CP.doc

Stickel, M., R. Waldinger, M. Lowry, T.
Pressburger, and I. Underwood (1994).
"Deductive Composition of Astronomical
Software from Subroutine Libraries", in
Proceedings of the Twelfth

International Conference on Automated
Deduction (CADE-12), June, 341-355

